Single annulus estimates for the variation-norm Hilbert transforms along Lipschitz vector fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD

We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).

متن کامل

Application of the Norm Estimates for Univalence of Analytic Functions

By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

متن کامل

Bilinear Hilbert Transforms along Curves I. the Monomial Case

We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.

متن کامل

L Estimates for Bilinear and Multi-parameter Hilbert Transforms

C. Muscalu, J. Pipher, T. Tao and C. Thiele proved in [27] that the standard bilinear and bi-parameter Hilbert transform does not satisfy any L estimates. They also raised a question asking if a bilinear and bi-parameter multiplier operator defined by Tm(f1, f2)(x) := ∫ R m(ξ, η)f̂1(ξ1, η1)f̂2(ξ2, η2)e 1122dξdη satisfies any L estimates, where the symbol m satisfies |∂ ξ ∂ ηm(ξ, η)| . 1 dist(ξ,Γ1...

متن کامل

Mixed Norm Estimates for Certain Generalized Radon Transforms

In this paper we investigate the mapping properties in Lebesgue-type spaces of certain generalized Radon transforms defined by integration over curves. Let X and Y be open subsets of R, d ≥ 2, and let Z be a smooth submanifold of X×Y ⊂ R2d of dimension d+1. Assume that the projections π1 : Z → X and π2 : Z → Y are submersions at each point of Z. For each y ∈ Y , let γy = {x ∈ X : (x, y) ∈ Z} = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2016

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13277